Для физических лиц наборы переменных, используемые банками для кредитного скоринга на первый взгляд могут показаться одинаковыми. Обычно банк интересуется следующими характеристиками заёмщика: возраст, количество детей/иждивенцев, профессия, профессия супруга(и), доход, доход супруга(и), район проживания, стоимость жилья, наличие телефона, сколько лет живет по данному адресу, сколько лет работает на данной работе, сколько лет является клиентом данного банка, наличие кредитной карточки/чековой книжки.
Набор характеристик может меняться в зависимости от региона, в котором работает, банк, в силу его экономических и социально-культурных особенностей, но в любом случае, он будет тесно связан с оценкой вероятности дефолта заемщика. Чем более однородна популяция клиентов, на которой разрабатывается модель, тем точнее прогнозирование дефолта. Поэтому внутри одного банка могут применяться различные модели для различных групп клиентов и различных видов кредита.
Банки стремятся к стандартизации процедур оценки кредитоспособности формализации принятия решений о кредитовании, основываясь на критериях, непосредственно связанных с вероятностью дефолта. Иными словами, банки заинтересованы в построении математических моделей, которые позволяют оценить, какая информация является существенной, а какой можно пренебречь. При моделировании набор переменных в каждом конкретном случае может существенно меняться, поскольку одни и те же экономические характеристики могут быть отражены разными типами переменных — непрерывными, дискретными и т.п.
Скоринговые модели могут быть весьма разнообразными и включают в себя: статистические методы, основанные на дискриминантном анализе (линейная регрессия, логистическая регрессия); различные варианты линейного программирования; дерево классификации или рекурсионно-партиционный алгоритм (РПА); нейронные сети; генетический алгоритм; метод ближайших соседей.
У каждого из методов имеются свои преимущества и недостатки. Выбор метода связан со стратегией банка и с тем, какие требования банк считает приоритетными при разработке моделей. Очевидно, что регрессионные методы показывают значимость каждой характеристики для определения уровня риска, и поэтому особенно важны на этапе разработки анкеты, которую заполняют клиенты. Линейное программирование может оперировать большим количеством переменных и моделировать определенные условия: к примеру, если маркетинговая стратегия банка направлена на молодежь, можно ввести условие, чтобы интегральный показатель молодых людей был выше, чем тех, кому за 60. Нейронные сети и деревья классификации выявляют нелинейные связи между переменными, которые могут привести к ошибке в линейных моделях.
Рассмотренные методы не исчерпывают всего многообразия современных способов, служащих для определения кредитоспособности заемщика. В последнее время банки все чаще разрабатывают и внедряют собственные модифицированные методы оценки, которые включают в себя как элементы скоринга, так и расчет финансовых показателей. На основании полученных результатов заемщику присваивается кредитный рейтинг, который определяет степень его кредитоспособности и возможность предоставления ему ссуды.
Другие статьи:
Коммерческие банки как участники налоговых отношений и особенности их
налогообложения
В любой налоговой системе банки всегда занимают особое положение. Это обусловлено тем, что во взаимоотношениях с налоговыми органами банки выступают в трех действующих лицах:
- непосредственно как самостоятельные налогоплательщики;
- ка ...
Взаимодействие коммерческих банков с экономическими субъектами
В экономической литературе существует широкое и узкое толкование банковского рынка. Банковский рынок в широком смысле слова - это любой рынок с участием банков. Следовательно, этот подход приводит к отождествлению банковского рынка и р ...
Страхование ответственности
Если вы своими действиями причинили вред чьему-то имуществу или личности, вы обязаны его возместить, иначе с вас взыщут возмещение. Это называют ответственностью за причинение вреда.
Существует ответственность за причинение вреда имущест ...